

Airport ASF Mapping Methodology Update

International Loran Association

18-19 October 2005 Santa Barbara, CA

Authors

- Dr. Peter Swaszek
 - University of Rhode Island
- Dr. Gregory Johnson, Mark Wiggins, Michael Kuhn
 - Alion JJMA Maritime Sector
- Capt. Richard Hartnett, PhD
 - US Coast Guard Academy
- Kevin Bridges
 - Federal Aviation Administration

Outline

- Proposed Methodology (Spatial)
 - Pre-test and field work
- Field Test to Prove the Methodology
 - Airports in Maine and Ohio
- Results of Field Test
- Conclusions

Proposed Methodology

Current Strategy

- Aviation
 - Set of static ASFs for each airport
 - One set if possible
 - Two if ASF variations are too large, rcvr to "interpolate" between the two
 - No temporal correction; ASF values chosen in the middle of the seasonal range
- Need a standard, validated procedure for establishing these airport values
 - ASF Correction Estimates (ACE) published (median of seasonal variations)

Proposed Methodology – Part 1

- Identify airport area and runways
- Run BALOR predictions to estimate ASFs along airport approach paths
- Determine whether 1 set of ASFs is sufficient
 - Based on worst case of
 - ASF differences
 - Station geometries
 - Expected signal levels
 - Use simulation aiming for a maximum error in the position domain of 120m.

Methodology Part 1 Con't

Simulation model:

$$TOA_{actual} = TOA_{(predicted)} + BALOR_{(ASF prediction)} + Noise$$

- Noise (1 sigma) aviation values
 - Rcvr/channel 25-100ns
 - Directional variation 100ns

Methodology Part 1 Con't

- Locations for field measurements
 - End points of approach paths (Initial Approach Fix) – 10 miles out
 - Airport (each runway end?, tower?)
 - Other potential "hot spots" identified by BALOR or topography
 - Desired points may not be reachable
 - ½ mi crosstrack from centerline, ½mi along track?

Methodology Part II

- Conduct Field test
 - Static monitor at airport to remove temporal variations during testing
 - Static measurements at each of the identified points
 - Collect sufficient data:
 - Error in the ASF measurement of less than 25 ns, 1 sigma?
 - Remember that differencing between mobile and ground reference doubles the noise

Methodology Part II con't

- Adjust measured ASFs to true ASFs using system timing data from TFE at Loran stations
- Assign ASF Correction Estimates (ACE)
 - one set airport "center"
 - two sets airport and 10mi out for each approach path
 - User receiver interpolates between the two?

Field Test

Field Test to Validate Methodology

- Tests conducted by USCGA / Alion / FAATC during July/August/September 2005
- Goals
 - Assess BALOR
 - Evaluate/prove proposed methodology; modify as necessary
- Test Components
 - Ground Measurements
 - Flight Verification of RNP 0.3
 - Long Baseline Measurements BALOR model validation
 - ASF Profile vs. Altitude determine a bound on altitude variation in ASF

Ground Measurements

Procedure

- Collect static data at multiple points along each approach path (every 2NM).
- Ground reference station (to remove temporal variation)

- Do some testing with two ground reference stations
 - Assess the geographic stability of the temporal measurement
- Analysis
 - Average ASF* value calculated for each point
 - Correct for any system time errors

Flight Verification

Flight verifications using FAATC Convair 580

- Procedure
 - Fly all approaches five times
 - 10NM out along extended runway centerline to the threshold
 - Collect TOA/ASF* data during flights
- Analysis
 - Post-process TOA data with ACE data for approach, calculate position error

Airports for Field Test

- Maine
 - Auburn-Lewiston (LEW)
 - 20 ground points
 - Portland International (PWM)
 - 16 ground points
- Ohio
 - Lorain County (LPR)
 - 10 ground points
 - Toledo Express (TOL)
 - 20 ground points

Test Van

Field Test Equipment

Results

Portland, ME

- Portland International Airport (PWM)
 - Runway ID's: 11, 29, 18, 36
- BALOR boundary box:
 - Top: 43.821 N
 - Bottom: 43.475 N
 - Left: 70.565 W
 - Right: 70.06 W

Loran Stations Near Maine

Possible Loran Towers

- <1000km</p>
 - Nantucket
 - Caribou
 - Seneca
- >1000km
 - Carolina Beach
 - Cape Race
 - Comfort Cove
 - Fox Harbor
 - Dana

BALOR - Caribou

BALOR -Seneca

Typical ASF Variation

Performance Simulation

Actual Flight Test – rw 11

1/11/2006

Lorain, OH

- Lorain County Airport (LPR)
 - Runway ID's: 7, 25
- BALOR boundary box
 - Top: 41.425 N
 - Bottom: 41.264 N
 - Left: 82.396 W
 - Right: 81.958 W

Loran Stations Near Ohio

- Possible Loran Towers
 - <1000km</p>
 - Dana
 - Seneca
 - Carolina Beach
 - >1000km
 - Nantucket
 - Malone
 - Baudette
 - Grangeville
 - Caribou

BALOR - Dana

BALOR - Seneca

Typical ASF Variation

Performance Simulation

Actual Flight Test – rw 7

Conclusion / Future

- With 1 ASF <120m error CROSSTRACK is met, but not TOTAL ERROR
- Still working on BALOR validation
 - Mobile results not well-matched to BALOR...
- Future: focus on BALOR validation
 - Continued analysis of Maine and Ohio data
 - Long Baseline Flights November
 - BALOR bug fixes and enhancements, further analysis
 - TFE data to get Absolute ASF...
- Airship See next paper

Acknowledgements

- US Federal Aviation Administration
 - Mitch Narins
- FAA Technical Center
 - Bob Erikson
 - Scott Shollenberger
- Alion Team
 - Christian Oates
 - Ken Dykstra
 - Ruslan Shalaev
- ASF Working Group
 - Sherman Lo, Stanford University
 - Peter Morris, Northrop Grumman
 - Dave Diggle, Curt Cutright, Ohio University
 - Tom Gunther, Bob Wenzel, BAH
 - Jim Carroll, Volpe NTSC

Questions?

gwjohnson@alionscience.com swaszek@ele.uri.edu rhartnett@exmail.uscga.edu

Long Baseline Measurements

Purpose

- Validate BALOR model for distances >1,000 km from the Loran towers
- A variety of propagation paths are needed:
 - all seawater
 - all land
 - mixed seawater and land

Procedure

- Fly radials to/from Loran towers
- E and H-field antennas
- Flights to be conducted at constant 5000ft AGL
- Analysis (post-process)
 - Calculate ASF* values along the flight paths (radials only)
 - Correct ASF* values using TFE data to generate true ASFs
 - Compare resulting ASF and Signal Strength profiles to BALOR

